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SUMMARY

An outline of a random walk computational method for solving the Schridinger
equation for many interacting particles is given together with a survey of
results so far achieved as well as of further applications that could be

explored. Monte Carlo simulations are able to calculate accurately both the

bulk properties of the light elements hydrogen, helium, and lithium, as well
as the properties of the isolated atoms and molecules made up from these
elements. For the first time it is possible to make reliable predictions of
the behavior of these substances under experimentally difficult conditions,
such as high pressure, and for experimentally difficult to measure properties,
such as the momentum distribution in superfluid helium. For chemical systems
the stochastic method has a number of advantages over the widely used

variational approach to obtain ground state properties, namely fast

convergence to the exact result within objectively established error bounds.



In the early days of quantum mechanics P.A.M. Dirac observed that the
physical laws necessary for thh mathematical theory of a large part of physics
and the whole of chemistry are completely known and it is only necessary to
find practical methods for the solution of the equations for complex
lystems.(l) One could have expected that the advent of modern, high-speed
computers would have by this time enabled such computations to be preformed.
However, the endeavor implied by Dirac's stateman£ of principle remains
largely unfulfilled. Many of the existing numerical methods provide only a
qualitatively understanding of the properties of isolated atoms and molecules
or their collective bdhaﬁlor in the condensed state. These methods prove
quantitatively inadequate, either because the approximations they embody
cannot be further refined, or the numerical scheme converges too slowly.

A numerical method developed relatively recently to solve the Schrddinger
equation for many interacting particles has the potential to realize Dirac's
goal. This method is a departure from the conventional approach to many-body
problems in mathematical physics, namely it does not reduce a system with very
many degrees of freedom by an approximation to equations of much reduced
dimensionality.

Alternate numerical methods that do not invoke such an approximation,
such as the configurational iﬁteraetion method in quantum chemistry, neverthe-
less expand the unve'function in a complete set of one-body functions so that
once again one only has to deal with low dimensional mathematical objects.
Moreover, the functions used for the expansion are generally restricted so
that the low-dimensional integrals that appear in the theﬁry can be performed
analytically. The price paid for these restrictions is that even with a large
number of terms, frequently running into the millions, the calculations do not

converge with the accuracy desired for chemistry.



In the new numerical techniques, called the quantum Monte Carlo method,
the Schrodinger equation, which exactly describes nonrelativistic particles,
is represented by a random walk in the many-dimensional space in such a way
that physical averages are exactly calculated. Monte Carlo or statistical
methods are in fact the c;nly general methods known for exactly solving
problems in many dimensions, provided only that the problem can be formulated
in terms of probabilities.

Such a numerical approach has only become ppui.ble since the advent of
high speed computers, and is, in fact, particularly adaptable to these
machines, since algorithms are simple and highly repetitive, characteristics
that can take full advantage of the fast arithmetic ca.pabi'li’l_:ies of modern
computers. Furthermore, these methods can be easlly adapted to a variety of
computer architectures. They yleld exact results within statistically
determined error bars that decrease with the length of the computer run. The
principal goal in developing algorithms is thus to find ways of increasing the
efficlency of the calculations. This can be done in a straightforward way,
namely through a technique called importance sampling, which uses previous

knowledge to provide a good starting approximation.
The application of statistical methods to quantum-mechanical problems is

not without difficulties of its own, the most serious being the calculation of
systems which have a wave function that is not everywhere positive. Neverthe-
less, considerable prosi'ess over the past few years has enabled us to carry
out realistic simulations of systems composed of the light elements. Ue
intend to show here that th_ére is no practical impediment to realizing Dirac’s
program for many other many-body systems, although these applications will

require both considerably more efficient algorithms and faster computer

hardware.



Diffusion Monte Carlo

Fermi remarked around 1945 that stochastic methods could be used to solve
the Schridinger equation (2). The earliest recorded implementation was
carried out in 1949 by Donsker and Kac (3) for the hydrogen atom, but the
results were unimpressive because the lack of an importance function led to
very low efficiency. For the same resson an unpublished calculation by
Rosenbluth (4) a few years later for the ground state of liquid !l-le gave
unsatisfactory results. Mesnwhile, stochastic processes came increasingly to
be used to study neutron tra_hspori: and classical condensed-patier systems. An
important step for quantum Monte Carlo methods was made by McMillan (5) in
1965 when he used a yariational method to simulate helium. He showed that a
one to one corr_espondm.lce to a classical simulation could be made if ope
assumes & pair product wave function. In the same period, Kalos (6) developed
what is kmown gs the Green's Function Monte Carlo method, which in 1974
culminated in an exact algorithm for calculating the ground-state properties
of the hard-sphere boson fluid (7). We will describe a simplified version of
Green's Function Monte Carlo, known as diffusion Monte Carlo. '

The basis of diffusion Monte Carlo is that the Schridinger equation
written in imaginary time, t, will converge to the ground state exponentially

fast. That equation for the wave function ¢(R,t) is:

|
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where m'i is the mass of particle j, V(R) is the total potential energy, R

refers to the 3N set of particle positions and N is the number of particles.

A constant, BT. the trial energy, has for convenience been subtracted from



the potential energy. From a formal expansion of the wave function in a
complete set of eigenvectors and eigenvalues, it can be readily demonstrated
that all excited states decay exponentially fast with a decay constant given
by the excitation energy from the ground state. The rate of convergence to
the ground state is hence governed by the lowest excited state that has a
component in the initially chosen wave function.

If it 1s assumed that ¢(t) is non-ne;ative.}aa is the case for bosons
or distinguishable particles in the ground state, the wave function can be
directly interpreted as a probability density, so that Eq. (1) can be
interpreted as a diffusion and branching process in 3N dimensions. A useful
snalogy is to bacteria randomly diffusing in a puddle with a diffusion
constant of 52/2m. where the growth conditiopl sre uneven and depend on
the position in the puddle, that is, on the potential energy, which determines -
the rate of growth or decline of the bacterial population there. .The bacteria
do not interact with each other, since the Schrédinger equation is linear.
Then Eq. (1) gives the evolution of the distribution in time. Alternative
numerical methods that rely on tabulating the distribution everyihere (for
example, in a grid) will consume an exponentially large ampunt of computer
time and memory as the dimensionality of the space (the number of particles)
increases. Direct simulation by random walks which samples the distribution
selectively appears to be the only general way of numerically solving the
quantup many-body problem.

Such a computer calculation is set up in the following way (see Fig. 1).
An initisl ensemble of systems is constructed, usually from a classical Monte
Carlo calculation with some trial wave function as proposed by McMillan. An

ensemble consists of a number of snapshots of the coordinates of all the



particles, let us say of all the electrons and nuclei. In actual calcula-
tions, the ensemble is made up of about one thousand such snapshots. The
evolution is accomplished by considering .each snapshot in turn, displacing
each of the particles by a random smount with a mean squdre displacement given
by -tﬂzlan. where t is the time step. ‘rhen branching is done; a number

of copies of the snapshot equal to the integer part of tB*P['-fIZ(Vol at

v nan” + u] is made, where u is a uniformly disir.{buted random number in
[0,1]1. Thus a new ensemble is generated with a different mumber of .
snapshots. As the ensemble is evolving and its population is varying, the
trial energy, K, must be adjusted with a feedback mechanism 8o that the
population remains stable. If the populatloﬁ becomes too large, B,! is made
smaller, if the population diminishes E, is increased. The valua of E,
necessary to stabilize the population is then the ground state energy. The
snapshots generated once steady state is reached ('i.'e. , when 3¢/3t=0) are

then samples of the ground state wave function.

Importance Sampling

For most problems the above algorithm is not aatlisfactory because the
branching process is uncontrolled. Whenever the potential energy becomes
large and negative, as it will, for example, when an electron approaches a
nucleus, the branching process blows up, and, s huge number of copies of that
snapshot are created. Luckily, there is a very simple and elegant way of
curing this problem: importance sampling.

Importance sampling means changing the underlying probability
distribution in a known way so that the caleulatidn will spend more time in
the important regions. For this purpose the trial functlon, ’r' is

introduced as an approximation to the ground-state wave function (derived for



example, from a Hartree calculation) and f(R,t) = %(R)#(R,t)is
defined. The Schrddinger equation can be written in terms of f by some

algebraic manipulations (8), resulting in the importance-sampled equation
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which has a structure very similar to the original Eq. (1) but with some
important differences. The first term on the right-hand side is the gradient
of something; therefore it conserves probability and does not cause '
branching. It represents diffusion with a superimposed drift. 1In our
analogy, the water in the puddie is not still but in steady motion, carrying
the bacteria around the puddle while they are diffusing. The second term
again gives rise to branching, but now the rate is determined by the local
energy EL(R)smTMT-BT.

The process of simulating this equation proceeds as follows (see fig.l):
An initisl population is generated according to |¢?.I|z. Thie ensemble is
evolved by examining each snapshot and diffusively displacing each coordinate
as before but in addition displacing each position by a drift term equal to
ﬁnz V|iing|/m. The effect of the drift is to push the random walk away
from unimportant regions, that is where the triasl function is small, since
there the drift velocity is large. The number of coples is now calculated
from exp{—-:lZ[EL(old) + EL(new)l} mapped onto an integer with a
random number as before. The crucial improvement is that if ¢r has been
chosen close to the ground-state wave function, the local energy will be
small, so that branching is much less. Importance sampling makes it
practically possible to solve the Schrodinger equation for several hundred

particles. Also note that for good trial functidns the asymptotiec



| distribution of snapshots will be equal tB the square of the wave functiom,
which is just what one would expect physically.

The statistical error of the ground state energy 1s approximately given
by 12, - E)/(wnP*)1/? which has the familiar dependence on the
inverse square root of the number of steps, with a proportionality éonstanf
given by the difference between the variational energy of the trial function
iv an& the correct ground-state energy. Here PX ig an effective population
of the ensemble (the averase_numb#r not counting duplicates) and n is the
total number of time steps. Thus the computational efficiency is determined
by the accuracy of the trial function (EV—BI) times the computer time
necessary to evalﬁate the trial function, the drift, and the local energy for

a single snapshot. There is a trade-off between trial functions that are

accurate and those that are fast to evaluate.

Green's Function Monte Carlo

Green's Function Monte Carlo (9) is a reformulation of the diffusion_
process so that no systematic errors due to the finite time step,r, arise.
The method is so nawed because the differential equation is converted into an
integral equation, the kernel or Green's function of which is sampléd
exactly. The procedure is a generalization of a Monte Carlo method suggeéted
bf von Neumann and Ulam (10) to solv; systeﬁs of linear equations. In Green's
Function Monte Carlo there are several additional elements in the algbrithm.
For one, the time step itself must be sampled for each move; the walk does not
advance by a predetermined time. Furthermore, intermediate snapshots that are
not legitimate members of the ensemblg are generated. They serve only to
sample the correct Green's function and hence contribute only to the

propagation of the walk. In some cases this more complicated procedure is



more efficlent, since a larger average time step results (11). Furthermora,

the procedure does not require user adjustment of the time step, the exact

result will be automatically obtained.

Ferml Statistics
It would appesr from the discussion so far that the method is limited to

the calculation of systems where the wave function is non-negative. A few
years ago the method was extended to ground-state fermion systems, where the
wave function is real but equally positive and negative &ue to the réquirenent
of antisymmetry necessitated by the Pauli exclusion principle. -Antl;yumntry
is built into the trial function by multiplying the pair product function by a
Slater determinant. The Slater determinant is made from single electron
orbitals obtained from the Hartree-Fock or local density functional method.
These orbitals determine the nodes of the trial function, where it changes
sign. The procedure for fermions has evolved 1n-tuo steps: the fixed-node
approximation and the subsequent exact algofithm.thnt releases those nodes.

In the fixed-node approximation (9,12) only one additional rule needs to
be added to the previously discussed aigorithm: if the random walk crosses a
node of the trial function, that is, when QT(olds¢!(nsw)<0, that
snapshot is deleted. This will occur relatively rarely, since the drift term
will push the walks away from the places where the wave function vanishes. In
our analogy of the bacteria, we must add the condition that the bacteria in
the puddle die if they reach a boundary. Thus, this method solves the
Schrédinger equation in each nodal region separately. It can be shown that
the energy so obtained is the best upper bound consistent with these boundary
conditions (13). It has been found that this approximation is often

numerically very accurate because the node locations are not crucial for
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determining the energy. Of course, if the correct node locations are known,
as in one-dimensional problems, the exact result is obtained. One can apply
the fixed-node approximation to calculate any excited state for which a
variational principle applies.

The releasing of tﬁe nodes (8,14) so as to get their correct locations
leads to the exact fermion ground state; however, the computer time required
may become exponentislly large due to a numerical instability. Snapshots are
not deleted when they hop across a nod'e. but no‘-v carry a plus or minus sign
corresponding to the sign of the trial function when the walk was bo:gun. The
estimate of the wave function is the difference i.n the number of positive and
negative snapshots that arrive at a given point, and the trial energy is
correctly adjusted when this difference at any given point is constant in
time. Although the procedure is mathematically correct, the signal-to-noise
ratio for a given amount of computer time decreases exponentially as the
positive and negative walks become mixed, as shown in Fig. 2; thus the
computer budget may run out before satisfactory results are obtained. Because
the method is unstable it has been called a transient estimate (15). In
principle, there are ways of cancelling positive and negative snapshots so as
to prevent the exponential growth in the population (16). In practice, this
is difficult to carry out in many dimensions because the probability that a
positive and negative snapshot will have the positions of all of the particles
fdentical within a possible re-labeling is too small. In spite of these
difficulties, satisfactory results have often been obtained (8). A rigorous

and stable method to simulate fermion systems by a stochastic process remains

a most challenging problem.
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Other Quantum Monte Carlo Techniques

The variational quantum Monte Carlo method, an adaptation of the
classical Metropolis algorithm (17), was previously mentioned in connection
with finding good importance functions and initializing the ensemble. It can
also be used to determine the ground-state wave function in the same sense
that the traditional variational methods (Hartree-Fock or configuration
interaction) are used. In the conf 13ura£:lon interaction procedure, the wave
function is expanded in a complete set of functléms. each of which is an
antisymmetric product of single particle orbitals. For variational quantum
Monte Carlo methods, there is no such restriction on the basis set, since the
required integrals are obtained with Monte Carlo' rather than analytically. An
intriguing possibility is that of a self-learning mechanism, in which the
output of the Green's Function Monte Carlo simulation is used to improve the
form of the trial function.

For finite-temperature quantum mechanical calculations, the path-integral
Monte Carlo procedure is employed. The origin of the method is based on the
observation that the density matrix (at high temperatures the density matrix
is the Maxwell-Boltzmann distribution, at low temperatures it is the square of

the wave function) can be factored into a product of density matrices, each at

a2 higher temperature:

®_le MR <n°|.""’u|n1><n1|.....Inn_1><n!_1|.‘h“'ulvn) . (3)

where 8 = 1/kT, T is the temperature and H is the Hamiltonian. The number of
products, M, is chosen sufficlently large so that at the effective temperature
MT, an accurate expression for the density matrix exists, usually such that

the Boltzmann distribution becomes valid. That transformed density matrix can
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then be evaluated by an analogy to a classical system of N closed polymer
rings of M links (18). The simulation problan.at finite temperature is then
reduced to finding an efficient procedure for sampling all energetically
contributing polymer configurations represented bf all the intermediate
positions Ri of the links, or..in other words, all contrlbutiﬁg paths, which
the classical Metropolis (17) method is used. This path integral Monte Carlo
scheme differs from the Green's Funcgion Monte Carlo method in that the paths
must close on themselves becduse thermodynamical properties are gotten from
the trace or the diasﬁnal part'of the density matrix. For the polymer system
one samples a space of 3NxM instead of thé 3uxP dimensions (P is the popu-
lationh of the ensemble) in the Green's function method. Also there is no
explicit importance sampling in path integral Monte Carlo methods. Boson
statistics are introduced by allowing neighboring polymers to cross-link.
efficient sampling of this polymer-like system has made it possible to
perform accurate simulations (19) of liquid ‘He both above and below the
superfluid transition point . In contrast, there havg been very few
simulations of fermion systems in continuous space at finite temperatures,
although the zero-temperature techniques discussed earlier are applicable.
Most applications have been restricted to lattice and spin systems (20),
particularly those for the lattice gauge theories of high-energy physics.
An entirely different method, that has also been tried primaerily on
lattice problems (21) and oﬁ one-dimensional systems (22), ought to be further
explored for three-dimensional Fermi systems in continuous space since Ferml
statistics pose no special difficulty with this method. ' In this method pailr
interactions in the Hamiltonian are replaced by 1nteractloﬁa with an external
random, time-dependent field. By this so-called Hubbard-Stratonovitch (23)

transformation the many-body calculation is exactly transformed to one of a
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system of one-body noninteracting fermions. The one-body problem must,
however, be solved at each step which requires considerable computer time. A
further disadvantage of this scheme appears to be that there is no way to

allow for the introduction of pair product importance functions.

Condensed-Matter Applications

The calculation of the properties of liquid ‘He at zero temperature was
the first large-scale application of Green's Function Monte Carlo (7,24). It
assumed a pair interaction potential between helium atoms, deduced from both
theoretical considerations and experimental data. Such an interaction
potential can now be accurately calculated directly by Monte Carlo methods
(25). Equilibrium properties, such as the energy versus density, pressure
versus density, crystallization pressure at zero temperature, and the
structure factor obtained by X-ray or neutron diffraction, come out very close
to experimental values (24); the differences can be ascribed to the inadequacy
of the assumed pair pt.:tan.tial.

The most spectacular properties of liquid helium, the dynamical ones
resulting from its superfluidity, are difficult to simulate with this method.
However, many of -these unusual transport properties are believed to result
from the fact that in superfluid helium, a finite fraction of the atoms have
condensed into a zero-momentum state. The difficult neutron-scattering
measurements of the momentum distribution needed (26) to confirm this theory
are given in Fig. 3 at 1° K; As mentioned above, similar calculations at
finite temperatures are now being completed.

The electrons in the conduction band of a si.m:;le metal are often modeled
by replacing the ions by a uniform positive background. Although the model

dates back more than fifty years, there have been no convincing calculations
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of its properties, in spite of many attempts, except in the asymptotic limit
of high and low densities. Even the order of magnitude of the melting density
is not generally agreed upon. Wigner (27) predicted that, contrary to the
usual situation, a crystal phase occurs in the low density regime. The
properties of the electron gas have been calculated (8,28) by the variational,
fixed-node, and release-node Monte Carlo methods, and the melting transition
has been located. In contrast to the simulations of liquid helium there are
no direct emperimen£31 results to compare with these electron gas
calculations. Hence, in Fig. 3, the momentum distribution of an electron gas
at a density approximately equal to that in the conduction band of potassium
is compared with that of an ideal, non-interacting fermi gas. Recent
calculations similar to those on the elqctron gas have been performed on the
3He. a fermi liquid, resulting in a good agreement with experiment (29).
The electron simulation results are now often taken as standard input to the
approximate solid-state calculations employing local density functional theory.
The electron gas has a fairly rich phase diagram. At zero temperature
and normal metallic densities, the gas is a re‘ular. spin-paired diamagnetic
fermi liquid. As the electron density is reduced by a factor of one million,
the electrons spontaneously spin polarize. The polarization increases as the
density is lowered by another million times when the electrons undergo Wigner
crystallization. Such ferfomagnetism nearly'oecupa in liquid'sﬂe at low
temperature and partly accounts for the unusual magnetic behavior of that
liquid. These Monte Carlo calculations, involving several hundred particles,
have not yet attained the precision to explore such subtle effects as the
superfluidity of 3He or the superconductivity of metallic hydrogen. The
effects energetically are too small and the relevant length scales for the

phenomena too large compared to the size of the system that can be simulated.

~14-



However, it is possible to calculate the response of the electron gas to
various types of external fields, test charges or impurities. Such
calculations are underway.

Hydrogen, as the simplest of the elements, provides a natural extension
of the previous work on the electron gas in which the uniform background is
replaced by the actual protons. It is much more difficult to use a molecular
pair potential in Monte Carlo calculations of the properties of hydrogen than
it is with helium. The pair interaction for hydrogen is more complex and less
certain, and at higher pressures there are nonpairuise additive effects. Thus
the simulations were performed directly with protons and electrons,
interacting only through their coulomb potential. Both the protons and the
electrons have a sizeable quantum motion. This is taken into account in the
simulation by letting the protons drift and diffuse, but at a rate 1836 times
slower than the electrons, which is the ratio of their masses.

These calculations can be compared with equrlnents (30) at pressures
sbove one million atmospheres (1 Mbar), reached Qith a diamond anvil
apparatus. However, the molecular-atomic transition to a metal, first
predicted by Wigner in 1935 (31), has not yet been observed experimentally.
Simulation of hydrogen (32) in both the molecular and atomic phase established
that this phase transition occurs at about 2.8 Mbars. It has also been
established that the protons undergo a melting transition at low temperature
but under astrophysical conditions of 10s Mbar. The excellent comparison of
the theoretical equation of state in the molecular phase with the experimental
one is shown in Fig. 4. The energy resolution achieved with these
calculations of 0.001 Rydbergs/atom is also enough to crudely determine the

pressure (roughly 1 Mbar) at which hydrogen molecules stop rotating, that is

they become aligned in the crystal.
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These simulations of hydrogen have only scratched the surface of the
interesting properties that could be reliably calculated. It would be
relatively straightforward to obtain band gaps, bond frequencies, and
dielectric properties of hydrogen although the computer time requirements are
significant, 10 hours of CRAY-1 time per computation. Calculations of the
properties of mixtures of hydrogen and helium such as they occur in the core

of Jupliter and simulation of metallic lithium are further possible extensions

of this work.

Few-Body Problams

The applications so far described have all been to bulk systems for which
periodic boundary conditions were used to minimize finite system effects. To
calculate the properties of a few-particle system, such as molecules or
clusters, the correct boundary conditions are those of an 1§olated system. In
such studies the advantage of the Green's Function Monte Carlo method lies not
only in its rigor, but also in its ability to deal with many more electrons
than alternative ab initio methods. The amount of computer time needed to
achieve a given statistical error per atom increases only as the number of
particles squared. For very large systems, one can use sparse matrix
techniques to lower this power further.

As a first example of a few-body system, the energy of three hydrogen
atoms for several positions of the three protons has been calculated (33).
The potential surface for this molecule needs to be known to establish the
barrier for the simplest chemical reaction, namely the exchange of a hydrogen
atom witﬁ one in a hydrogen molecule. The Monte Carlo calculated energy for

the barrier was 9.60 + 0.05 kcal/mole, which is 0.3 kcal/mole lower than the

best variational configuration interaction upper bound (34), but exactly the
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same as the latter if a correction that estimates the rate of convergence of
the expansion is applied. |

Another example is a cluster of lithium atoms. Calculations on the
lithium dimer gave more accurate total energies (8,33) than the configuration
interaction calculation. Similarly, the ground-state energy of the trimer in
various geometries has been determined, encouraging the study of much larger
clusters. If accurate results can be obtained for sufficiently large clusters
wiﬁh reasonable computef time, it will be possible to realistically simulate
metal surfaces directly and then to study the properties of molecules absorbed
on the surface. In such cluster calculations the lithium nuclei should not be
held fixed, but the geometry of the cluster should come out of the calculs-
tion. A good approximation would be to asaumn-that these nuclei behave
clasgsically, callip; for an algorithm which can deal with both classical and
quantum-mechanical degrees of freedom at the seme time. Such an algorithm
would be very useful in treating any liquid system, such as water, starting
with classically behaéing oxygen and hydrogen nuclél (the latter requires
quantum corrections but not a full quantum treatment) and electrons that
behave quantum mechanically. Such calculations would be considerably more
realistic than the present classical simulations.of water based on rigid
molecules interacting with pair éorces. Houaver; with present computers and
methods such a simulation of water would be too costly. One needed
improvement is a way of directly calculating the change in the electronic
energy as classical degrees of freedom change. Such a need arises in many
applications. Work is underway on a differential Monte Carlo scheme that
computes such energy differences.

The reason only relative energies are requifed iz that frequently one is

interested only in the difference in the energy of various arrangements of the
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atom in & molecule to find the one of highest stability. Another application
would be in the simulation of atoms larger than neon. The two main problems
for heavier elements are that the time step needed to follow thé innar
electrons becodes smaller the tighter the coré elettrons are bouhd, leading to
slow convergence. Furtheriiore; the difference between the fermioh ground
state and the distribution to which the system relaxes sfon ntdal release
becomes larger For atoms with inore electrons, so that there is inereahing
difficulty in reliably ex@ractins'the difference between the positive and
negative populations. If the inner shell electrons could be accurately
ropresented by a pseudopotential these difficulties would be ameliorated,
since then only the part of the random walk conceirned with the electrons in
the vﬁlenee region would contributé. The accurate replacefient of the inner
electrons by a pseudopotential requires thﬁt the core electirons be insensitive
to the valence electrons. If for that purpose a non-local pseudopotential
must be introduced, the Monte Carlo calculation would be iuch more involved.
As a8 final example of few body-problems we considér the sticking
probability of a muon to an alpha farticle. this shows the ability of the
Monte Carlo method not only to obtain energles but also to calculate the value
of the wave function in an extremely improbable arrangement of the partlcles,
nanely when two nuclei are in the process Qf fusing. The total number of -
fusions catalyzed by a single muon placed in a deuterium tritium liquid is
experimentally found (35) to be over 100. This value is limited by the
probability that an alpha particle will capture a muon immediately after a
fusion occurs. Calculation of this captuie probability requires knowing the
value of the wave function of a molecule composed of a muon bound
simulteneously to a deuteron and a triton. Such a three-body ca;culation is

difficult by traditional methods, since the energy is insensitive to the value
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of the wave function where it is needed, at the coalescence point. However,
the wave function can be calculated by Monte Carlo in a very simple way (36).
Many random walks are startgd from the desired configuration of the '
particles. When the walks have reached their steady state distribution the
ratio of the exact wave function to the trial wave function is pro?ortional to
the average population of the ensemble. The method is rigorous, and even at
this highly singular point}_importanqe sampling permit calculation of the wave

function with a relative error of 1es§ than 0.5%.

Conclusion

The Green's Function Monte Carlo technique has been revieuéd and a few
illustrations to problems in condensed-matter and few particle systems have
been given. The algorithm is still very much in the development phase and
applications have been limited to a few long standing problems. WNevertheless,
it is already apparent that the simplicity, rigor, and adaptability to
different computer architectures of this approach mske it likely that it will
become a standard computational tool in physics and chemistry. Future
algorithmic improvements include finding better numerical methods of dealing
with fermions, ways of improving the trial wave function so as to make
importance sampling more effective, computing excited states, combining
quantum and classical Monte Carlo calculations, finding an efficlient procedure
for calculating energy differences, and dealing yith fermions at finite
temperature. The possible list of systems that could be simulated is endless

ranging from nuclear matter to plasmas in outer space - - that is whenever

more than two particles interact.

0235M/0519M
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Fig. 1.

Fig. 2.

Figure Captions

Schematic of the Green's Function Monte Carlo calculation with
importance sampling, demonstrating the evolution of the "snapshots.”
Illustrated is a three electron system in a box; the squares represent
old positions, the circles new ones. The old ensemble consists of
four snapshots, the new one consiﬁts of three. The process leading to
a new ensemble involves i) adding to oéeﬁ electron's coordinates a
drift term equal to'1ﬁ2;1n|¢T|Im (shown by arrows) where t is the
time step; il) adding a random displacement (shown by a wiggly line)
representing the diffusive step whose mean square displacement in each
dimension is 1ﬁ212m; i11) branching that creates from zero to

several snapshots in the new ensemble, with the number determined by
the integer part of m-[exp{-tgh}+u], where u is a unifornly
distributed random number in (0,1) and !L'H¢T’¢T'!! is the

local energy. In the fixed-node approximation for dealing with
fermions, a snapshot is deleted if the sign of ¢t has changed

during this step. With these three new snapshots, the process is

repeated.

Node release for the first excited state of a particle in a box.

(a) In the initial guess, the node was not properly located at the
middle of the box, however the wave function was made to be orthogonal
to the ground state. The circles represent the distribution of the,
positive population, the squares the negative population, and the wave
function, the difference between the two distributions, is the solid

curve. (b) Shows the evolution of both the positive and negative
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Fig 3:

Fig 3:

Fig. 4.

populations toward the symmetric, nodeless, ground state, while the
difference has an improved node location. (c) Continues the process,
vividly demonstrating that the difference is increasingly hard to

determine numerically as the positive and negative populations grow.

a) The momentum distﬁbution, n(k), as a function of momentum, k, for
liquid ‘I-le at 1° K. The momentum distribution as obtained by Monte
Carlo calculations at zero temperature consists of a zero momentua
component, the condensate, represented by a delta function, 8(k)
(heavy line at the origin), comprising about 10% of the particles and
a normal component, n*(k), represented by the solid curve Ignoring
the temperature dependence, the normal component can be compared with
the results of neutron scattering experiments at 2.27° K, (above the
superfluid transition, open circles). The solid circles represent the
measured momentum distribution at 1°K (below the superfluid transi-
tion). The condensate fractlon_. found by integrating the difference
between the experimental distribution at 1° K and at 2.27° K, is found .

to be 14%. comparable to the theoretical one at 0°K.

b) The th distribution of an interacting electron gas calculated
at zero temperature and at a density approximately equal to that of
the valence electrons in potassium under standard conditions
calculated by the Monte Carlo method (dots and heavy line) is compared

with that of an ideal ferml gas (dashed line).

The energy of hydrogen (in rydbergs/atom) at zero temperature versus

volume in cc/mole. The corresponding pressure is indicated on the
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upper ordinate in megabars. The results of the diamond-anvil
experiment are given by the solid curve and an extrapolation of the
data by the dashed curve. The Monte Carlo results for the molecular
phase are given by open squares and for the atomic phase by closed
squares joined by a dotted line. The double-tangent construction
indicated by the straight line determines the molecular-to-atomic

transition reglon to be between the two horizontal markers at 2.8
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